
  
Abstract— The paper presents a method to identify and code mental 
states from EEG signals, performing their dynamical analysis by 
means of an Artificial Neural Network. The method has been tested 
on signals from a 14 electrodes EEG system connected to immersive 
glasses that allow a realistic audiovisual experience. A software 
procedure synchronizes the acquired signals with the sensory 
experiences presented in a video. A suitable Artificial Neural 
Network detects and codifies the chaotic attractors signals related to 
the sensory and cognitive events. The analysis shows that the binary 
codes corresponding to similar cognitive and perceptive stimuli are 
similar, and well differentiated from the codes corresponding to 
different stimuli. The dynamical attractors corresponding to each 
mental state are submitted to a procedure that evaluates their 
Integrated Information content in the qualia space. 
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I. INTRODUCTION 
HIS Neuroscience and in particular the consciousness 
studies constitute one of the most fascinating and 
challenging issues of modern science. 

Several authors have tried to characterize the general 
properties of consciousness: among many others, [1]-[5].  

There is a broad consensus on the fundamental 
characteristics of consciousness: its subjective, qualitative 
nature, continuing over time, in the sense that memory 
connects the consciousness of the present with the 
consciousness of the past; its multisensory nature, connected to 
the processes of thought, emotion, memory, imagination, 
language and action planning. 

Most of the neurobiological theories on consciousness 
show that cortical and thalamus activity plays a critical role 
and provides much of the content of consciousness. Most of 
these theories are also based on the assumption that the neural  
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correlates of consciousness (NCCs) are a functional complex 
of neuronal cells, but it is not yet clear which neurons, cortical 
regions or connections they involve. 

The search for NCCs is one of the most difficult challenges 
of modern neuroscience. Despite of many new theories, 
analytical methods and tools, the subjective experience still 
hides from a precise neurophysiological identification [6]-[8]. 

A recent prominent theory is the Integrated Information 
Theory (IIT) developed by G. Tononi and M. Edelman, [5],[9], 
[10]. It is based on the fundamental principle that 
consciousness stems from the rapid integration of a large 
amount of information into a dynamical nucleus of strongly 
interacting elements; interconnections between regions of the 
thalamo-cortical system mediate this rapid integration.  

The authors refer to the mathematical theory of information 
proposed by C. Shannon and W. Weaver [11]. According to 
this framework, information is defined as the reduction of 
uncertainty among a number of possible outcomes x of a 
random variable  X  when one of them occurs. Thus an 
increase of uncertainty corresponds to higher information, and 
the information content of x , I(x), will be a decreasing 
function of its probability. Shannon showed that this function 
is expressed by 

 
I(x)=-log2P(x) 

 
where P(x) is the probability that x occurs. 

Entropy of the random variable X is defined as the 
expected value of the information content of X (i.e. its average 
information content) 
 

H(X)=E(I(X)) . 
 

Thus Entropy can be defined as a measure of the 
uncertainty associated with X. 

Given two subsets A and B defining a single bipartition of a 
system X, Mutual Information measures the uncertainty of A 
that is accounted for by the state of B, and is defined as 
 

MI(A; B) = H(A) + H(B) − H(AB) . 
 

The Effective Information of a system measures the extent 
to which its repertoire of possible states is differentiated in 
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response to all possible inputs. Effective Information is 
calculated as the Mutual Information across a partition when 
the outputs from one subset have maximum Entropy.  

As before mentioned, the IIT hypothesizes that 
consciousness corresponds to the capacity of the system to 
integrate information, and this measure is indicated by Ф. 

Ф is defined as the Effective Information across the 
weakest link of the system, i.e. the Minimum Information 
Bipartition. The Minimum Information Bipartition is the 
partition of the system for which the Effective Information is 
lowest. 

To summarize, in order to calculate the integrated 
information of a system Ф (thus a measure of consciousness, 
as intended in the IIT framework) it is sufficient to calculate 
the integrated information between two partitions of the 
system, among all the possible ones, which have the lesser 
amount of effective information between them. A high value Ф 
will denote highly structured complexity. 

In the brain, the thalamo-cortical system can be described as 
a single large highly complex system whereas, on the contrary, 
the cerebellum consists of a large number of very small 
complexes, each corresponding to a single module and thus 
having a very low complexity. In terms of complexity, the 
differences between brain and cerebellum are therefore not the 
amount of effective information related to the repository of 
possible states that characterize each system, but rather the 
level of integration of the information contained therein. 
Hence the flow of information between two parts of the same 
system must be considered. 

But once defined a formal way to measure Ф and once 
identified a brain system that may represent a good candidate 
to generate integrated information, a method to represent 
complexity and integration in brain structures in such a way as 
to quantify Ф from real data must be developed. 

One of the methods currently studied to analyze complexity 
in brain structures is to study the brain as a dynamical system. 

Brain dynamics refers typically to the dynamics of neuronal 
populations, networks or columns within cortical areas. It is 
characterized by its high complexity, often involving  
oscillations at different frequencies and amplitudes, perhaps 
interrupted by chaotic  or pseudo-chaotic irregular behaviour. 

Synchronization among groups of neurons were first 
discovered in the olfactory system [12],[13], but has also been 
demonstrated in other brain structures, such as 
the hippocampus [14]-[18] and the visual cortex [19],[20], 
where the oscillations tend to synchronize in phase. 

Synchronous oscillations can occur in nearby neurons, but 
also over considerable distances across spatially separate 
columns [20] and even between cortical areas [19],[21]. 

According to IIT, several aspects of the organization of the 
cortico-thalamic system and of transient attractor dynamics 
appear well suited to information integration. 

It has been recognized that the massive interconnectivity 
within and among cortical areas (and with thalamus) provides 
an ideal substrate for cooperative dynamics among distributed 
neurons [22]. A plausible scenario for characterizing such 
dynamics is in terms of transient attractors. 

In fact neurons in the cortico-thalamic system seem to 
behave in such a way as to ensure the rapid emergence of 
firing patterns that are distributed over wide regions of the 
cortex, where some neurons are strongly activated, and many 
more are deactivated. These firing patterns remain stable 
(hence they form attractors) over a time scale of tens/hundreds 
of milliseconds, but then rapidly dissolve (hence the attractors 
are transient), to make room for another transient attractor. 
Attractors have been indicated in the form of binary strings 
(e.g. in a Hopfield network consisting of 8 elements with 6 
embedded attractors, the attractors are indicated with 
00001111, 00110011, 01010101, and their mirror images.) 

Metastable systems, namely dynamical configurations that 
constitute non-fixed-point attractors, are good candidates to 
form a class of systems with high Ф [9],[10],[23]. 

 Our approach stems from the wide literature mentioned 
above. By means of a novel self-organizing ANN, called 
ITSOM, we show how the dynamical analysis of neural signals 
may highlight the existence of chaotic attractors, differentiated 
depending on the cognitive states, that outlines the attractors in 
which the corresponding dynamical system is evolving.  

This model has been used in the past in other researches of 
our group, allowing to analyze multiple neural signals and to 
identify complex patterns corresponding to specific dynamical 
attractors in signals [24],[25]. 

If the attractors show to be chaotic, this means that the neural 
signals are individually self-organized and, when analyzing 
more signals together, that there is a form of coherence 
between signals. . The ANN can also highlight the time course 
of this form of coherence and identify different attractors with 
a unique code. The ANN allows to attribute the same codes to 
similar but not identical brain events, reaching the necessary 
range of flexibility.  

II. METHODS 
The Self-Organizing Map (SOM) [26],[27] features are well 

known. The SOM is essentially a classifier that performs a 
vector quantization, that is a mapping from a space with many 
dimensions to a space with a smaller number of dimensions, 
preserving the initial topology. 

It is constituted by an input layer (in this case the signal that 
flows in time in the layer, one sample for each neuron) and a 
competitive layer, where the neuron closest to the input “wins” 
and is modified in such a way that the new adjusted weight for 
the node is equal to the old weight, plus a fraction of the 
difference between the old weight and the input vector: 

 
( )inew iold iold iw w x w zα= + −  

 
where  0 1α< <   slowly decreases over time with the law 
 

α(t) = α[1 - t/δ]  

 

where δ is a suitable constant, being zi ≠ 0 only for the 
winning neuron. 

Then the network cycles adapting itself up to a stable state. 
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As above mentioned, the ANN model adopted in this 
research, named ITSOM (Inductive Tracing Self-Organizing 
Map), is especially suited for identifying structures in temporal 
series. 

The ITSOM architecture stems from the SOM architecture 
but is based on the observation that the time sequence of the 
SOM winning weights tends to repeat itself, constituting 
chaotic attractors that are isomorphic to the attractors of the 
signal time series, and characterize univocally the input signal 
that produces them. 

The ITSOM network memorizes the time series of the 
winning nodes, and this sequence makes it possible to classify 
the corresponding input value much more finely than with a 
SOM. 

A detailed description of the ITSOM’s architecture is 
reported in [28] . 

 
 

 
 

Fig. 1. the ITSOM structure: The sequence of the ANN winning 
nodes tends to repeat itself creating a cahotic time series that 

carachterizes the input signal. 
 
 
A crucial feature of the ITSOM is that the cyclic 

configurations stabilize within a small number of epochs, that 
makes this model very effective for real-time applications.  

The cumulative scores for each input are normalized 
according to the distribution of the standardized variable z  
given by 

 

( )  
  

x
z

µ
σ
−

=                       

 
where µ  is the average of the scores on the neurons of the 

competitive layer  and σ  is the standard deviation. 
Once set a threshold 0 1τ< ≤ , which therefore constitutes 

one of the parameters of this type of network, we put 
 

  1      
  0      

z for z
z for z

τ
τ

= >
= ≤

          

In this way, each configuration of winning neurons is 
represented by a binary number formed by as many ones and 
zeros as many the output layer neurons. 

Due to the existence of the threshold, the z-scores coincide 
when the series of winning sequences are approximately 
similar. Then the task of comparing z-scores becomes 
straightforward and allows us to identify similar or identical 
input patterns.  

Analyzing the signals by means of the ITSOM network, it 
can be shown that attractors are labeled with a binary code that 
identifies them univocally, but the flexibility of the ANN 
allows to attribute the same codes to similar dynamical events: 
this is an important issue, as of course  neural signals are never 
identical even when the stimulus that influences them is the 
same [29]. 

In this way we obtain a fine classification of the signal on the 
basis of its dynamical self-organization in time.  

III.  THE EXPERIMENTAL PHASE 
In this study we processed signals from a 14 electrodes of the 

EMOTIV+ wireless EEG system [30] (Fig. 2),  connected to 
immersive glasses that allow a realistic audiovisual experience.  

 
 
 

 
 
 

Fig. 2. The Emotiv+ system and  the 14 electrodes 
 
 

The performances of the EMOTIV+ headset were evaluated 
in literature as equal  to - or better than - a  research EEG 
headsets [31]. 

The subject wears both glasses and EEG headset. A video 
administers sensory  and  cognitive  stimuli, each one lasting 
10 s, followed by a 5 s black stimulus, as a function of control 
and reset (Fig. 3). We chose different colors, colored images 
and written words repeating the colored stimuli.  

A procedure developed in [32] synchronizes the acquired 
signals with the various sensory and cognitive experiences 
presented in the video. 

At the end of the experiment, signals are recorded and the 
analysis procedure is applied. 

We chose in particular to process four electrodes (T8, P7, 
O1, F7) (Fig. 4) as the most interesting in relationship with the 
chosen stimulations. In fact F7 is involved in cognitive control, 
T8 in episodic memory, P7 in visuospatial processing and the 
O1 main functional area is the primary visual cortex.  

The frequency analyzed were  Beta ( between 12.5 and 30 
Hz ) and Gamma (>30 Hz). 
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Fig. 3. The video administered to the subjects. The sensory and 

cognitive stimuli last 10 s and are followed by a black stimulus     
lasting 5 s. 

 
 

 
 

Fig. 4 . The  4 channels chosen for the analysis: T8, P7, O1, F7 
 
 
Aim of the analysis is to test if  similar stimuli give rise to 

chaotic attractors identified with identical or similar codes.  
ITSOM can process both individual signals and many signals 

simultaneously, highlighting the attractors in which  the 
corresponding dynamical system is evolving. If the attractors 
are chaotic, this means that the signals are individually self-
organized or, if you examine more signals together, that there 
is a form of coherence between signals. The ANN can also 
highlight the time course of this form of coherence.  

Once the time series of the attractors is available, it is also 
possible to quantify these complex dynamical events with 
many parameters useful to compare the dynamical events 
corresponding to different kinds of stimulations. 

IV.  RESULTS AND CONCLUSIONS 
Signals were acquired from seven subjects: results are not 

comparable, as by definition each subjective experience is 
different from subject to subject. But the analysis of the binary 
codes resulted from the ITSOM processing shows the constant 
evidence that in any subject’s signals most binary codes are 
identical or similar for similar patterns, and different for 
different patterns. 

The figures show the analysis of the signals from one of the 
subjects. In particular, the shown analysis concerns the Gamma 
band of the T8 electrode. Gamma band gave the best results. 
This can be a further confirmation that the most prevalent 
physiological candidate for a key role in consciousness is 
synchronized neuronal activity in the gamma frequency band, 
approximately 35-45 Hz. This hypothesis is supported by a 
number of studies that have highlighted a widespread gamma 
synchronization in the magnetoencephalogram (MEG) in REM 
sleep and sleep state [33] and auditory evoked potential, used 
as marker of the state of consciousness in anesthesia studies 
[34]. Engel and Singer have suggested that synchronization 
can play a role in all the underlying processes of 
consciousness: arousal, sensory segmentation, selective focus, 
memory, and even in higher cognitive processes such as 
motivation, action planning, and symbolic processing [21]. 

 In Fig. 5a, 5b, 5c the first columns show the sensory and 
cognitive stimuli, the second columns show the binary code 
resulted from the ANN processing, the third columns show the 
attractors generated by the dynamics of the sequence of 
ITSOM winning neurons: the figure represents a snapshot of 
movies that show a typical chaotic path. 

To summarize the results, comparing the stimuli, the codes in 
Table 1 are obtained, clearly highlighting how similar stimuli 
give rise to similar codes, that result to be quite different from 
the codes obtained by different stimuli.  
 
 

 
 

Fig. 5a. Binary codes and attractors of  Yellow or similar stimuli 
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Fig. 5b. Binary codes and attractors of  Blue  or similar stimuli 
 
 
 

 
 

Fig. 5c. Binary codes and attractors of  Green  or similar stimuli 
 

 
 

 
 

Table 1. Summary of the results. Codes of similar stimuli are     
similar, codes of different stimuli are quite different. 

 
 
 
 
 
 
 

Using the tool available at the website of the Center of Sleep 
and Consciousness of the University of Wisconsin [35],[36], 

that allows to explore the Information Integration theoretical 
framework,  we have been able to calculate the Ф value of the 
specific patterns through their related dynamical attractors.  
The summary of results in sketched in Table 2.  
Φ represents the integration at a system level, whereas any φ 
measures the integration at the mechanism (subsystem) level. 
The dynamical representation in the concept (qualia) space of 
some of the patterns is  reported in Fig. 6 and Fig. 7. 
 
 
 

Pattern Φ Σϕ 
YELLOW 0.08323 1.6131 

BLUE 0.08323 0.69643 

GREEN 0.21528 0.91667 

LEMON 0.21528 1.41667 

SKY 0.08323 0.69643 

MEADOW 0.21528 0.91667 

WRITTEN YELLOW 0.21528 0.91667 

WRITTEN BLUE 0.21528 1.41667 

WRITTEN GREEN 0.21528 1.91667 

 
Table 2.    Integrated Information Calculus 

 
 
 
In conclusion, for all the color stimulations the Ф value was 
equal to 0.08323, except for the Green color that had a Ф 
value equal to 0.21528. The other stimulations had a Ф value 
higher than the pure colors and equal to 0.21528: in line with 
the IIT, this is correct as they have not only sensory but also 
cognitive contents, thus should involve more neural structures 
and can be considered more complex. Although the Ф value of 
stimulation patterns of information content with equivalent 
complexity coincide, their specific information contents are 
diverse and composed by subsystems with different values. 

We would be tempted to state that these codes can be a way 
to identify qualia, i.e. the subjective and qualitative experience 
of mental conscious states and of their neural correlates [23], 
as there is an extremely high number of possible binary codes, 
but we can distinguish a set of dynamical states with unique 
codes that we may call “qualia codes”.  
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Attractor of : Yellow 
 

 
 

Attractor of: Lemon 
 

 
 

Attractor of: Written Green 
 
 

Fig. 6.  Dynamical representations of some of the patterns 
 
 

 
 

Conceptual structure of: Yellow 
 

 
 

Conceptual structure of: Lemon 
 

 
 

Conceptual structure of: Written Green 
 
 

Fig. 7. Conceptual structures of the patterns in Fig.  5 
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In this case, as the size of the competitive layer is 10, the 

number of possible codes is 210 = 1024. For more complex 
patterns, the choice of a higher number of codes would be 
more suitable. Future developments of this research aim to 
identify more numerous and complex sensory and cognitive 
stimuli. Currently we are experimenting a new set of visual, 
auditory and cognitive stimuli, overlapping and comparing 
them with emotional stimuli, with promising results. 

The IIT dynamical approach described in [9],[10],[23] does 
not fully specify yet the underlying dynamics of real signals 
and the way to identify it, due to the lack of a robust 
quantification method. 

We hope that our contribution may be useful to go one step 
further towards the fine-grained discrimination of mental states 
by means of brain dynamics analysis, making it possible to 
quantify and evaluate their Integrated Information content.  
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